A graph search and neural network approach to adaptive nonlinear model predictive control
نویسندگان
چکیده
Systems with a priori unknown and time-varying dynamic behavior pose a significant challenge in the field of Nonlinear Model Predictive Control (NMPC). When both the identification of the nonlinear system and the optimization of control inputs are done robustly and efficiently, NMPC may be applied to control such systems. This paper considers stable systems and presents a novel method for adaptive NMPC, called Adaptive Sampling Based Model Predictive Control (Adaptive SBMPC), that combines a radial basis function neural network identification algorithm with a nonlinear optimization method based on graph search. Unlike other NMPC methods, it does not rely on linearizing the system or gradient based optimization. Instead, it discretizes the input space to the model via pseudo-random sampling and feeds the sampled inputs through the nonlinear model, producing a searchable graph. For this discretization, an optimal path is found using Lifelong Planning A, an efficient graph search method. Adaptive SBMPC is used in simulation to identify and control a simple plant with clearly visualized nonlinear behavior. In these simulations, both fixed and time-varying dynamic systems are considered. Results are compared with an adaptive version of Neural GPC, an existing NMPC algorithm based on Newton–Raphson optimization and a back propagation neural network model. When the cost function exhibits many local minima, Adaptive SBMPC is successful in finding a low-cost solution that appears close globally optimal while Neural GPC converges to a solution that is only locally optimal. This paper presents the method, soundness and completeness theory, and two simulated NMPC examples. The first is a transparent single-input single-output example, and the second considers a more complex power plant combustion process with two inputs and three outputs. & 2016 Published by Elsevier Ltd.
منابع مشابه
Adaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network
An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...
متن کاملAdaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems
This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...
متن کاملReal-Time Output Feedback Neurolinearization
An adaptive input-output linearization method for general nonlinear systems is developed without using states of the system. Another key feature of this structure is the fact that, it does not need model of the system. In this scheme, neurolinearizer has few weights, so it is practical in adaptive situations. Online training of neuroline...
متن کاملطراحی کنترل کننده پیش بین سیستم بویلر- توربین
A nonlinear model predictive control (NMPC) algorithm based on neural network is designed for boiler- turbine system. The boiler–turbine system presents a challenging control problem owing to its severe nonlinearity over a wide operation range, tight operating constraints on control move and strong coupling among variables. The nonlinear system is identified by MLP neural network and neur...
متن کاملRejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller
This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays. An optimization procedure for a neural MPC algorithm based on this model is then developed. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eng. Appl. of AI
دوره 55 شماره
صفحات -
تاریخ انتشار 2016